Computing Invariants of Reductive Groups in Positive Characteristic

نویسنده

  • Gregor Kemper
چکیده

This paper gives an algorithm for computing invariant rings of reductive groups in arbitrary characteristic. Previously, only algorithms for linearly reductive groups and for finite groups have been known. The key step is to find a separating set of invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups

In this paper, a new  algorithm for computing secondary invariants of  invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants.  The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...

متن کامل

Vinberg’s θ-groups in positive characteristic and Kostant-Weierstrass slices

We generalize the basic results of Vinberg’s θ-groups, or periodically graded reductive Lie algebras, to fields of good positive characteristic. To this end we clarify the relationship between the little Weyl group and the (standard) Weyl group. We deduce that the ring of invariants associated to the grading is a polynomial ring. This approach allows us to prove the existence of a KW-section fo...

متن کامل

Infinitesimal Invariants in a Function Algebra

Let G be a reductive connected linear algebraic group over an algebraically closed field of positive characteristic and let g be its Lie algebra. First we extend a well-known result about the Picard group of a semisimple group to reductive groups. Then we prove that, if the derived group is simply connected and g satisfies a mild condition, the algebra K[G] of regular functions on G that are in...

متن کامل

Applications of some Graph Operations in Computing some Invariants of Chemical Graphs

In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.

متن کامل

The Noether Number in Invariant Theory

Let F be any field. Let G be any reductive linear algebraic group and consider a finite dimensional rational representation V of G. Then the Falgebra F[V ] of polynomial invariants for G acting on V is finitely generated. The Noether Number β(G,V ) is the highest degree of an element of a minimal homogeneous generating set for F[V ]. We survey what is known about Noether Numbers, in particular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002